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A MOTE ON REGULAR PERTURBATION THEORIES 

by 

F. E. Blsshopp 

I.  INTRODUCTION 

There exist in the literature several related formulations 

of regular perturbation theory«  (cf. Morse A Feshbach; Kumar)«  In 

deciding which formalism to apply to a specific problem we must take 

into account the radius of convergence of the various methods, and, 

if possible, the ease of application«  In this note we shall develop 

a formalism, closely related to Fredholm's resolvent, which has an 

infinite radius of convergence«  The present formulation shares with 

the formalism derived directly from the Fredholm resolvent (Morse & 

Feshbach) the disadvantage of being rather cumbersome in its applica- 

tion«  Consequently, we shall go on to develop am asymptotic approxi- 

mation to the result« By  this means we shall obtain a relatively simple 

procedure for evaluating the result of a formulation which is unrestricted 

as regards radius of convergence«  Finally, we shall discuss the close 

relation between the present theory and Feenberg's (19^8) formulation 

of regular perturbation theory« 
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II.  FORMULATION OT  THE CLASS OF PROBLEMS 

We shall confine our attention to eigenvalue problems which 

may be written in the form 

H ♦  =  E ♦ (1) en     n n 

where: 

1.  H is a self adjoint, linear operator which depends in 

a continuous manner on a complex-valued parameter e; 

2«  {E } is a complex-valued discrete spectrum; n 

3«  t  is an element of a Hilbert space, ^; 

k.     With the possible exception of a finite number of iso- 

lated singularities in the e-plane, H is a bounded 

operator« 

It should be noted that the definition of the space £ generally 

involves specification of certain boundary conditions on ♦ ; we shall 

consider the case where the boundary conditions may depend upon e, but 

not upon E • 

Now, the object of a perturbation theory is to develop a 

technique for solving for '* and E in terms of known solutions, u and 

£ , of a related eigenvalue problem, 

H u  =  6 u    . (2) 
on     n n 

The operator H will be assumed self-adjoint, and the above problem, 

called the unperturbed problem, is to be related to the original in the 

following sense: 
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1«  It must be possible to define the difference, 

^  H Ho " He ' on * ; 

2«  The space    spanned by  the solutions {u ) must be a o n 

Hubert space for which 

V e *o 
*  -? -  { H^ e ^ 

E ♦ e J& o 

where E is any complex number; 

3«  There must be a value of e (which we may take to be 

6 = 0) for which H., = 0. 

It will be convenient to take {u } to be a normal set, !••• 

(V um)  =  6nm ^ 

where (u,v) is a suitably defined inner product on ■£) .  It should be 

noted that we have mads no specific assumption of independence of H on 

e, though in practice this is often the case« 

In virtue of the identity, 

we may write 

H = H -(H -H ) s H -H.  , (If) e    o    o   e    o   1 

♦  = (H -E )"1 K,*    . (5) n    on    x n ' 

If we define a projection operator, P , according to the property, 

(V Pnum)  =  ^n^mn  ' . (6) 



we har« 

k  - 

P ♦  + (1 -P )♦ 
n n      n n 

= g(e)u + (1-PM)(H -E^)"
1^* n       n  o  n   1 i 

= g(e)(l-K )"1u 0 n   n (7) 

wh«r« 

and 

K  * (1-P )(H -E )'1H1 n        n  o  n   x 

g(e)  « (un, Pn* ) =  (un, ♦ ) n  n n       n  n 

(8) 

Note that g(e) merely fixes the normalization of t ; therefore it is 

to a certain extent a function which may be chosen at our convenience* 

It will be convenient to take 

g(0)  = 1 (9) 

for then, if the eigenvalue, t  , of the unperturbed problem is non- 

degenerate, we have 

K u -• 0 and ♦  -• u  as € -• 0 n n n   n (10) 
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III.     BRILLOÜIH-WIQMER FORMALISM 

This perturbation  theory,  perhaps the  easiest one  to derive, 

follows upon setting 

gU)  =  1      and       (1 -K )"1 = Y (K ) n _'-^    n (11) 
m=0 

The eigenvalue E then follows by computation of the Inner product of 

Equation (1) and u ; thus 

E  =  fu , (H -E.) y (K )m u ^ 

By definition 

(Kn) a la -    ("/•   ^-V^o -w*) 
ti    n 

1 

where    H^ =  (u^, H1um) 

Thus 

where 

for m ^ 0 

H . H, 

(vC)  ■» ^   /nn 

v Y  nXi Vs        V 
l& (vEn)-(VE-) 

*  *      i^n t^fin      £n/in t^n 

(12) 

(13) 

(14) 
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and 

vB Hn/n 
Hje1 / *' * Hi 

\ -  "n-^nn'   )■  « /  I  . 1 \2  .  " . > (15) 
y / v \   n/i V2*" V 

The above equation gives En implicitly; in general the right-band side 

must be truncated and E solved for numerically« n 

The usefulness of this method is often impaired by the fact 

that the domain of the c-plane within which it converges may be too 

small to include the problem under consideration.  In virtue of the 

identity, 

(1-v(l ^ = 1 -K?+1     • (16) 
n 

it follows that a sufficient condition for convergence is 

((Knu. Knu)) 
4 

M Kn II  * Max |(K_u, K„u))  <1 (17) 

where the maximum is that obtained as u varies over the set {u }.  Thus. m       ' 

if there is a simply connected domain of the c-plane which contains e = ( 

and within which ||K || < 1, the Brlllouin-Wigner result will converge 

within that domain regardless of the details of the dependence of H 

on e.  In practice it is difficult, if not impossible, to determine the 

domain of convergence (even when H is uncomplicated) because of the 

appearance of En(c) in K^. 

It should be noted that if & is a degenerate eigenvalue hav- 

ing associated solutions u , v , ..., w  and if the limit as e -« 0 of 

one or more of the quantities 
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(un' Vn)        (un' Hlwn) 

e - E  • *'' ' c - E— 
n   n n   n 

is nonzero^ then the present forfflalism is inapplicable«  Since the 

generalization which includes such cases is well known, we shall not 

treat such degenerate perturbations in this or any of the following 

sections« 
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IV.  THE FREDHOLM RESOLVENT 

In this section we shall discuss a formalism which is similar 

to, but not identical with, that based on Fredholm's resolvent (of« 

Morse &  Feshbach, p. 1018 ft«).  It will simplify matters considerably 

if in what is to follow we employ a device by means of which the case 

where E, depends upon e in an arbitrary manner is reduced to the case 

where tt. is a linear function of a new parameter, \.  First, let us 

reconsider what we want out of our perturbation theory:  the point is, 

we want a continuation of the solution of Equation (l) which is given 

by the Brillouin-Wigner theory near e = 0 to a region of the e-plane 

which includes the 'final' value, e  (say).  In general such a con- 

tinuation will depend upon the path in the e-plane along which the 

solution is followed; i.e., there will in general be branch points and 

singularities of H •  However, once a path Oe is decided upon along 

which H is bounded and varies continuously, we may consider at each e 

lying on Oe  the related problem where 

H. - X H   . (18) 

The process of continuation of the solution along Oe may now be looked 

upon as a continuation of the solution along a path 01 in the X-plane 

at each value of e on Oe .  Since the perturbation, XH^, varies linearly 

in the X-plane, the solution, ♦ , is an entire function of X, and the 

continuation is independent of the particular path 01.  Furthermore, 

if e be taken sufficiently close to zero, the application of the 

Brillouin-Wigner theory to the related problem has a radius of conver- 

gence greater than 1.  Thus, we obtain a unique continuation along Oe , 
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satisfying the requirement of reduction to the Brillouin-Wiguer result 

for sufficiently small e. 

Let ua now turn to the continuation of solutions in the X- 

plane.  Equation (7) becomes 

•   =  (1-XK )"1 u (19) n n    n 

where we have again set the function g which fixes the normalization of 

♦  equal to one« n 

The treatment of Equation (19) given by Morse & Feshbach 

parallels the treatment of integral equations of the Fredholm type 

(c«f« Mikhlin, Section 9)«  The essential notion involved in this treat- 

ment is that of introducing a function y(X) whose reciprocal represents 

the singularities, which according to Fredholm's alternative appear at 

values of X for which the homogeneous equation, 

(1-XK )<p  =  0    , (20) m n m 

has a nontrivial solution«  The determination of X(X) is carried out 

by writing Equation (19) as 

♦n= xtTT [*(X)(l-XKnrlK  ' (2:L) 

where it is required that x(X)(l-XK )   shall be an entire function of 

X and || x(X)(l-XK )"1 || ^ 0.  It follows that X(X) is an entire func- 
n 

tion of X which vanishes only at the points X  for which Equation (20) 

holds; the order of the zero at X is given by the degree of degeneracy m 

of X . 
m 
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We shall not pursue this line ot  development any further 

since detailed accounts are available in the references cited in this 

section*  The point we wish to make is that a somewhat simpler for- 

malism results If we observe that the function X(\) need not be intro- 

duced in the present problem since we have at our disposal the normal- 

izing function g(e).  We shall take the normalizing function as g(e,X) 

with g(e) z g(e,l), and, suppressing for the moment the dependence of 

g on e, write 

♦n =  g(\)(l-\Kn)"
1 ua (22) 

with the requirement that g(X)(l-XK )**  shall be an entire function of 

X and that || g(X)(l - XK )~1 || / 0. 

Note that the present formulation implies that if ♦  is to 

be nonsingular, then its projection onto u vanishes at the eigenvalues, 

X .  Thus it may be seen that the singularities encountered in previous 

treatments follow from the unrealistic assumption that ♦ (X) is never 

orthogonal to ♦ (0). 

The function g(X) is not by any means uniquely determined by 

Equation (22) and the associated restriction; a given solution may be 

multiplied by any nonvanishing, entire function of X«  The formal ex- 

pression for t  of course depends explicitly on the choice of g(X); 

different functions, g(X), lead to different weighting of the various 

orders in the ordering of terms in the solution according to powers of 

X.  Consequently, the number of regular perturbation theories we may 

derive in this manner is limitless« 
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Mow suppose we specify the normalization integral, 

(♦n, *n)    =  f(X) (23) 

According to the properties of g(X), f(X) may be taken as any non- 

vanishing, entire function»  The most natural choice for f(\) is of 

course f(X) = 1; however, we shall not adopt any specific choice of 

normalization«  Thus we have 

[gwWa-XlO"1 un,   U-XIO"1  un)    =     f(X) (24) 

and 

En    "      (♦n'   ^o-^l^n)^^'   V 

((l-Xy1 un,   (^-XH^d-XK^-1  uj 
((1-XKJ-1  V   (1-X^)-1  u^ 

(25) 

It should be noted that when E  is expressed as in Equation (25), the 

quantities f(X) and g(X) do not appear, i.e>, all of the different per- 

turbation theories derivable by choice of g(X) (or f(X)) give precisely 

the same expression for E •  Now the above equation gives E as an entire 

function of X; therefore if we consider sufficiently small values of X 

and use 

Oft 

(1-XK r1  =  Y  (XK )B   for |X| <X (26) n       £_•    n o 
m=0 

The result, if expressed as a power series in X, holds for all values 

of X«  Thus we obtain 
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.'^mT  /•^',m. 
Kn  =   L'^/^'^     ' (27) 

m=0    / in=0 

where 
n 

J  =  V' (u , K+*H K"-* u ) 
m    *-* n     o     n 

" r Cun. K^H^-
1-^ un) 

je=o 

(28) 

To obtain the power series for E . we now treat (2JxmI )"  as the n ID 

generating function of a series jLt\  G •  From Equation (13) it follows 

that 

(K+m)    =  (K")    =0 for m ^ 0 (29) 
nn        nn 

and thus that 

I. = 1   .   I, = 0 (30) 

The recursion relation for the quantities, G , is now found to be m 

m-1 
G

ffl    =     ^   Vm-k-l fora>  2 (31) 
lc=l 

with 0=1,   Gj^  =  0.     The power series. 

s,   =   "L'^K 
m=0 y (32) 

in 

with Fm     =       L'   Jk Gm.k 

k=0 
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is then valid for all values of X. 

Equation (32) evaluated at X = 1 now gives E (c) implicitly 

at any point in the complex e-plane which may be connected to the 

origin by a curve along which H is a bounded operator» The drawback 

involved in the use of this formula is that at X = 1 it is in general 

necessary to retain a large number of terms in order to obtain a 

reasonable approximation to E . In the next section we shall discuss 

an asymptotic approximation to the characteristic equation TEquation (32) ;• 
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V.  ASmPTOTIC APPROXIMATION OF THE CHARACTERISTIC EQUATION 

Let us reconsider Equations (27) and (23)*  What we shall 

do is to find asymptotic approximations of both the numerator and the 

denominator of the characteristic equation. 

\ml 
m=0 m=0 

\mJ m 
(33) 

\mI 
m=0 

The reason for keeping both numerator and denominator of the above 

equation is that when the numerator formally diverges the denominator 

diverges in the same manner»  As we shall see, it is possible to write 

the asymptotic approximations in such a manner that the divergences 

cancel and a well defined characteristic equation results« 

Now from Equations (13) and (23) we have: 

1=1   \        /nn 

,   y. "nf^Ag ••• HV /  1 1 \ 

I H «  • • • ii« 

= - g' TnrVr (U+LB
"

1
") W j/n   n n  x      ' 

for m 2 1, where the vectors u  and u and the matrix L are defined as 
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L...  -  ; ll' ~      ; i. i«  / n       (35) 

fin the above definitions the branch of V^"^ is to be assigned in 

any consistent manner, e«g« 

0 * ang U/e/-En j < ü  . (56) 

As will be seen presently the results are independent of Equation {%).J 

Also, 

^ ■ ^n^-'L - i0r^i 

H   -      • • •   H.  n. 

(m+i)/ ET      n^i       J 
\i. =n/    /e. -E V" /ft.  -E \ 

(' +Tm-1 \ u  L       ul El,-   (u+Lm'\] (37) n    m+1       ' { 

for m *  1. 

The use of Equations (35) and (3?) together with 

1=1  , 1,-0  ,  J = &  . J-, = -H (38) 
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gives the characteristic equation the form 

(E-e +XH ) + X2 Z Am(u+I.Bu) 
n n   nn      m=0 

m=0  Ij/n d(ej-En) i 

= 0 (39) 

(It is interesting to note that setting the numerator of Equation (39) 

equal to zero gives exactly the result which would be obtained by the 

Brillouin-Wigner theory.) 

Now Equation (39)« as it stands, still represents an order- 

ing of terms in the characteristic equation in powers of X.  Since we 

wish to take X = 1 this is clearly the wrong ordering, and consequently 

we propose to order terms in Equation (39) according to quantities 

whose smallness is independent of the value of X.  The small quantities 

we shall use are in fact the elements of u ,u and L.  In order to make 

the point clearer, let us make the transformation 

X—(f)  '   «1—XoHl (40) 

where 

Max „ 
1,1' atl< (41) 

(One, but not both, of I  and /• may be n.) 

Equation (59) is formally unchanged by the above transformation, but 

the matrix elements H , and H.., are now bounded above by 1 and the 

original problem is recovered for X = X .  Now for finite values of E 

there will be an integer, I   , for which 

\\/t,  -E \<\\/t,      -il when I.   > I 
i   n 

(42) 
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Thus we may attempt to formulate an approximation based on the smallness 

of the matrix elements of L which follows from 

'Lii.i ^TCVT    
torl' *l>l* l    n 

(^3) 

In what follows we shall speak only of the case where n = 0; 

the generalization to cases where n / 0 involves essentially nothing 

new« 

Now, suppose for the moment that 

Vei - Eo | < |Vß
2 - 

Eo ikh) 

Then 

(45) 

provides an asymptotic approximation (valid in the limit of large separ- 

ation of unperturbed eigenvalues) to the characteristic equation«  In 

order to evaluate the result of the asymptotic approximation at \ = X , 

we find the analytic continuation of both the numerator and the denom- 

inator«  In the case at hand this is a particularly simple task since 

we need only sum the series, 
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Equation (<f5) now becomes 

1 + A 

(47) 

From the above equation (47) it is clear that the pole at V, such that 

E = &   -X H  is not a singularity of the characteristic equation even 

though X.. is (within our approximation) a point at which the Brillouin- 

Wigner theory diverges.  If we now multiply through by one troublesome 

factor and forget about the denominator we obtain the simpler character- 

istic equation, 

(Eo - eo + X Hoo) (^ - £1 + ^ll) '  x2[HolHlo + ^Tpir)]      (48) 

(Note that within the accuracy implied by the above equation there is 

no value X. for which the Brillouin-Wigner formula diverges unless 

H ,IL0 = 0.  This apparent anomaly is peculiar to the lowest approxima- 

tion of this type.) 

Equation (48) represents only the lowest order of approxima- 

tion in this formulation.  If it should turn out to be necessary to 

evaluate the characteristic equation at a value of X for which Equation 

(4^) is violated, we would naturally wish to retain more terms in our 

asymptotic approximation.  It turns out to be possible to provide the 

analytic continuations necessary for the evaluation of the asymptotic 

approximations of arbitrarily high order.  Consider,, for example, the 

case where terms up to and including ol(Cjj-E )" I are retained; then 



19 - 

Equation  (39)  becomes 

(E   -e   +XH    ) +X 
00 00 

1-V 
=    0        (^9) 

where 

and 

'N 
/     Hol                HoN     \ 

\A/6, - E ' V«.T - E   / ' 'Vv7^ 
lo 

(I) 
V^M- E ' N       o 

/   "" 

h 

e.-E 1    o 

Nl 

Wv^v^1^ 

alN 

VV^VVE 
■\ 

"NN 

VEo 

(50) 

Now  for sufficiently small  values  of  \ we  have 

Bl=0 
(XLN)tt (IN -  XLN)' (51) 
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where IN is the N x N unit matrix«  The analytic continuation of 

Equation (49) is thue given by 

(E -e +XH ) +\' 
o o  oo 

1-X' 

[{<<h-^-\)*o{T£r\ 
ti>rr^fah-^-\y feo) 

(52) 

where the matrix 

-1 (I„ - XL„) x m    -£ 'N N 
Si 
AN (53) 

is to be computed by Kramer's rule, i.e. 

AN ■ det |IN - XLN| 

(MK)ij  « Cofactor (IN - XLN)ji 
(54) 

The second and third approximations may now be computed with 

relative ease; they are to be evaluated at X = X , with the following 

results in terms of the original matrix elements derived from H (e): 

1st approximation 

M 
H -.EL 
ol lo (55) 

2nd approximation 

M ol 

M, 
VH 2 21 

«1 

(flo  +^fH2o) 

H o2 

M2. 
H21H12 

(H2o + T7 ho) (56) 
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3rd approximation 

H 
H. 01 

M 
H12H21 H13H31 

1      „   .V?2      M   -V2? n2 M3 
n3 M2 

^2 / 
Hio+     1^17: lH2o * 

M 2? ?2 
2 M, 

H, H, 

M-     30/      I       H32H23  \ M.S2rVH>° + ^H*>) 
3 M. 

+ (two  terms obtained by cyclic  permutation of the 

indices  12 3), (57) 

where 

Mj     s    eJ  - E    -  XHj. j J o jj (58) 

From the  foregoing formulae  it may be  inferred  that  the  N 

approximation  to   the  characteristic  equation may  be written in the  form 

M       =     C„|T-  n ' „> o N( 0,1   ...   U) (59) 

where CN denotes a sum over cyclic permutations of the indices follow- 

ing the comma, and 

M 
JJ^I jg* "h 

IH.   H 
J1J2 3231 

iz'fy' '•'P 

(60) 

M   s  & - E - H 



- 22 - 

It can be shown that an equivalent way of writing the N  approxima- 

tion is, 

"- ■ & Tf- * & ^ 7? „<»>      

(61) 

with 
H H 

(N) M 4'        Jpjp+1   Jp^Jp 

dp+1    %-"JP+l 

subject to the restrictions j    / j, when m > i.  The above form is 

exactly the result obtained if Feenberg's N  approximation is truncated 

by deleting every term which contains an index greater than N; in the 

limit where N -• •>> the two results are the same« 

Equations (53) through (61) have been derived by simply 

neglecting the denominator of Equation (52).  Consequently, they are 

subject to the appearance of apparent divergence whenever A  -» 0.  How- 

ever, as discussed previously, multiplication of the foregoing equations 

by t„  to give the result, 

(UJ^MJJUJJ)  «  0        when ^ = 0   , (62) 

is a justifiable procedure«     Thus we have a means  of Justifying the 

use of Feenberg's formula beyond  the points where  it diverges  (where 
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A « 0, c.f. Morse A Feshbach on this point) and, if desired, a pro- 

cedure which may be used in the neighborhood of such points as well« 

The convergence of our asymptotic approximations is of course 

not insured in general«  A discussion of sufficient conditions for 

convergence would involve specification of the behavior of the unper- 

turbed eigenvalues, £ , the degeneracies, w , and the matrix elements, 

H , as m and n become large« Such a discussion is beyond the scope mn 

of this note« 
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VI.  AN EXAMPLE 

As an example of the manner in which the formulae of the pre- 

ceding section may be applied, let us consider the Mathieu equation, 

^-J - ecos2x ♦ « E*   ,   HO)  = ♦(2TT) (63) 
dx 

We take as the unperturbed problem, 

2 
^-| = txx     ,  u(0) = U(2TT)  , (6^) 
dx 

with even solutions, 

u  . -i-  ,   6  =0 
/2n 

(65) 

1 -        2 u  = — cos nx   ,   C  » • n 

and add solutions. 

v  =  1 2 
n    — sin nnx   ,   C  =  - n   . (66) 

2 
Since H  (= cos x) is symmetric about x = TT the odd eigenfunctions do 

not affect the perturbation of the even ones and vice versa«  Let us 

fonfine our attention to even eigenfunctions; then we need consider 

only a nondegenerate problem with 
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vW 

di ̂   0 

^ - 

I 

o  \ 

/S 

i 
7 

/JS 2     ¥ 

o  I 

0   0   ^   o   i 

(67) 

f 
From the formula« of the last section and the 'zeroth* approximation 

(M « 0) we obtain the following results: 

e '  Eo -  Eo -E  (exact) o 

0 0 0 0 0 

k 2 1.5505 1.54487 1.54486 

56 18 -5.8 ~ 6 

100 50 ~ 10.8 ~ 10 

The interesting point is that the 2nd approximation, which in this case 

gives the relatively simple cubic characteristic equation. 
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(^M.) c2  e2 
1 "l6(EC

o
2^ie^VE^+iC+l6\J~8(E

l
o
2}
+*c^y 

(68) 

gives a result which at e = 4 is two orders of magnitude more accurate 

than the corresponding quartic approximation derived from the Fredholm 

resolvent (c«f« Morse &  Feshbach).  In addition, at e = 100, a value 

20 times greater than the radius of convergence of the Brillouin-Wigner 

formulation of this problem, the approximate result is still within 20^ 

of the exact«  In fact, as has been noted by Morse &  Feshbach, Feenberg's 

formula gives an exact continued fraction representation of the eigen- 

value in this case. 

It might be argued that we have not given the method a fair 

test in talcing a problem for which it converges«  This, however, would 

miss the point — the usefulness of this method lies in the ease of 

application on the one hand and the estimate of the error 

on the other»  Needless to say, the error estimates can be refined 

considerably in any specific problem« 

Finally it should perhaps be noted that the computation of 

our second approximation requires the evaluation of at most nine dis- 

tinct matrix elements«  This is to be contrasted with the evaluation 

(in principle) of infinite series required in the more cumbersome theory 

based on Fredholm's resolvent« 

le ease of 
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